Average tree solutions and the distribution of Harsanyi dividends

نویسندگان

  • Richard Baron
  • Sylvain Béal
  • Eric Rémila
  • Philippe Solal
چکیده

We consider communication situations games being the combination of a TU-game and a communication graph. We study the average tree (AT) solutions introduced by Herings et al. [9] and [10]. The AT solutions are defined with respect to a set, say T , of rooted spanning trees of the communication graph. We characterize these solutions by efficiency, linearity and an axiom of T -hierarchy. Then we prove the following results. Firstly, the AT solution with respect to T is a Harsanyi solution if and only if T is a subset of the set of trees introduced in [10]. Secondly, the latter set is constructed by the classical DFS algorithm and the associated AT solution coincides with the Shapley value when the communication graph is complete. Thirdly, the AT solution with respect to trees constructed by the other classical algorithm BFS yields the equal surplus division when the communication graph is complete.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributing dividends in games with ordered players

A situation in which a finite set of players can obtain certain payoffs by cooperation can be described by a cooperative game with transferable utility, or simply a TU-game. A solution for TU-games assigns a set of payoff vectors to every TU-game. Some solutions that are based on distributing dividends are the Shapley value (being the single-valued solution distributing the dividends equally am...

متن کامل

Harsanyi power solutions for games on union stable systems

This paper analyzes Harsanyi power solutions for cooperative games in which partial cooperation is based on union stable systems. These structures contain as particular cases the widely studied communication graph games and permission structures, among others. In this context, we provide axiomatic characterizations of the Harsanyi power solutions which distribute the Harsanyi dividends proporti...

متن کامل

Constrained core solutions for totally positive games with ordered players

In many applications of cooperative game theory to economic allocation problems, such as river games, polluted river games and sequencing games, the game is totally positive (i.e., all dividends are nonnegative), and there is some ordering on the set of the players. A totally positive game has a nonempty core. In this paper we introduce constrained core solutions for totally positive games with...

متن کامل

The average tree solution for cycle-free graph games

In this paper we study cooperative games with limited cooperation possibilities, represented by an undirected cycle-free communication graph. Players in the game can cooperate if and only if they are connected in the graph. We introduce a new single-valued solution concept, the average tree solution. Our solution is characterized by component efficiency and component fairness. The interpretatio...

متن کامل

Harsanyi power solutions for graph-restricted games

We consider cooperative transferable utility games, or simply TU-games, with limited communication structure in which players can cooperate if and only if they are connected in the communication graph. Solutions for such graph games can be obtained by applying standard solutions to a modified or restricted game that takes account of the cooperation restrictions. We discuss Harsanyi solutions wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Game Theory

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2011